您现在的位置:首页  师资队伍  闽江学者特聘教授
彭栋梁

姓名:彭栋梁

职称:教授、博士生导师

电话:0592-2180155

邮箱:dlpeng@xmu.edu.cn

个人简历

彭栋梁教授,理学(中国,1997)和工学(日本,2002)双博士,博士生导师,厦门大学南强特聘教授,国务院政府特殊津贴专家,国家杰出青年科学基金获得者,国家重点研发计划项目负责人(首席科学家),福建省优秀教师,福建省“百千万人才工程”入选者,福建省“科技创新领军人才”。中国微米纳米技术学会理事会理事,中国电子学会应用磁学分会委员会委员,中国物理学会磁学专业委员会委员,中国金属学会材料科学分会委员会委员,中国金属学会功能材料分会委员会理事委员,中国材料研究学会纳米材料与器件分会理事会理事,Steering Committee Member of the International Conference on Fine Particle Magnetism。

教育经历:

1983年6月   兰州大学物理系金属物理专业本科毕业,获理学学士学位

1989年6月   兰州大学物理系固体物理专业硕士研究生毕业,获理学硕士学位

1993年9月   兰州大学物理系凝聚态物理专业博士研究生入学

1995年10月-1997年10月  作为中日联合培养博士生在日本东北大学金属材料研究所留学

1997年12月  兰州大学物理系凝聚态物理专业博士研究生毕业,获理学博士学位

2002年3月   再获日本名古屋工业大学材料科学与工程专业 工学博士学位

工作经历:

1983年7月-1995年9月    兰州大学物理系 助教、讲师、副教授

1998年1-3月          日本东北大学金属材料研究所 讲师

1998年4月-2001年11月  日本东北大学-日本文部科学省科学技术振兴事业团 博士后研究员

2001年12月-2003年11月 日本名古屋工业大学-日本学术振兴会(JSPS) 博士后特别研究员

2003年12月-2005年3月  日本名古屋工业大学材料科学与工程系 高级研究员

2005年4月-2006年3月   日本名古屋工业大学材料科学与工程系 副教授

2005年12月-至今        厦门大学材料科学与工程系 教授、博士生导师

研究领域

能源材料与器件、磁性材料与自旋电子学物理、纳米和低维功能材料与器件

主要科研成果

先后承担了包括国家杰出青年科学基金、国家重点研发计划项目、国家重大科学研究计划(973计划)课题、国家自然科学基金重点项目等多项科研项目。已在Adv. Mater.、J. Am. Chem. Soc.、Adv. Funct. Mater.、ACS Nano、Nano Energy、Adv. Energy Mater.、Nano Letters、Angew. Chem. Int. Ed、Applied Catalysis B、Phys. Rev. B、Applied Physics Letters等国际国内著名学术刊物上共发表科研论文330余篇,其中SCI收录论文320余篇。已授权日本发明专利6项,授权中国发明专项16项。

主要代表学术论著与论文

(1)W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. S. Xie*, B. Sa, L. S. Wang, and D. L. Peng*, “A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials”, Adv. Mater., 33 (2021) 2103173.

(2)W. He, W. Guo, H. Wu, L. Lin, Q. Liu, X. Han, Q. S. Xie*, P. Liu, H. Zheng, L. S. Wang, X. Yu*, and D. L. Peng*, “Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries”, Adv. Mater., 33 (2021) 2005937. 

(3)P. Liu, H. Zhang, W. He, T. Xiong, Y. Cheng, Q. S. Xie*, Y. Ma, H. Zheng, L. S. Wang, Z. Z. Zhu, Y. Peng, L. Mai*, and D. L. Peng*, “Lithium Deficiencies Engineering in Li-Rich Layered Oxide Li1.098Mn0.533Ni0.113Co0.138O2 for High Stability Cathode”, J. Am. Chem. Soc., 141 (2019) 10876-10882. 

(4)Z. Qiao, Y. Zhang, Z. Meng, Q. S. Xie*, L. Lin, H. Zheng, B. Sa, J. Lin, L. S. Wang*, and D. L. Peng*, “Anchoring Polysulfides and Accelerating Redox Reaction Enabled by Fe-Based Compounds in Lithium–Sulfur Batteries”, Adv. Funct. Mater., 31 (2021) 2100970. 

(5)H. Zheng, Z. Hu, P. Liu, W. Xu, Q. S. Xie*, W. He, Q. Luo, L. S. Wang, D. Gu, B. Qu*, Z. Zhu, and D. L. Peng*, “Surface Ni-rich engineering towards highly stable Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials”, Energy Storage Materials, 25 (2020) 76-85.

(6)Y. Ma, P. Liu, Q. Xie*, G. Zhang, H. Zheng, Y. Cai, Z. Li, L. Wang, Z.-Z. Zhu, L. Mai*, and D. L. Peng*, “Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode”, Nano Energy, 59 (2019) 184-196.

(7)Q. Wei*, Q. Li, Y. Jiang, Y. Zhao, S. Tan, J. Dong, L. Mai*, and D. L. Peng*, “High Energy and High Power Pseudocapacitor–Battery Hybrid Sodium Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode”, Nano Micro Lett., 13 (2021) 55.

(8)L. Lin, F. Liu, X. Yan, Q. Chen, Y. Zhuang, H. Zheng, J. Lin, L. S. Wang, L. Han, Q. Wei, Q. S. Xie*, and D. L. Peng, “Dendrite-Free Reverse Lithium Deposition Induced by Ion Rectification Layer toward Superior Lithium Metal Batteries”, Adv. Funct. Mater., 2021, 2104081, DOI: 10.1002/adfm.202104081. 

(9)H. Zheng, C. Zhang, Y. Zhang, L. Lin, P. Liu, L. S. Wang, Q. Wei, J. Lin, B. Sa, Q. S. Xie*, and D. L. Peng, “Manipulating the Local Electronic Structure in Li-Rich Layered Cathode Towards Superior Electrochemical Performance”, Adv. Funct. Mater., 2021, 31, 2100783.

(10)W. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. L. Peng, and J. P. Liu*, “Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries”, Angew. Chem. Int. Ed., 60 (2021) 12931-12940.

(11)W. He, P. Liu, Y. Zhan, J. Lin, B. Qu, Z. Zheng, J. Wang, Y. Zhang, B. Sa, L. S. Wang, Q. S. Xie*, and D. L. Peng*, “Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics”, Journal of Power Sources, 499 (2021) 229915. 

(12)Q. Chen, C. Zhang, L. Lin, Q. S. Xie*, W. Xu, Y. Qiu, J. Lin, L. S. Wang*, and D. L. Peng*, “Electrochemically induced high ion and electron conductive interlayer in porous multilayer Si film anode with enhanced lithium storage properties”, Journal of Power Sources, 481 (2021) 228833.

(13)C. Zhang, Q. Chen, X. Ai, X. Li, Q.S. Xie*, Y. Cheng, H. Kong, W. Xu, L. S. Wang, M. S. Wang, H. Yang*, and D. L. Peng*, “Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties”, J. Mater. Chem. A, 8 (2020) 16323-16331. 

(14)X. Yan, Q. Zhang, W. Xu Q. S. Xie*, P. Liu, Q. Chen, H. Zheng, L. S. Wang, Z. Zhu, and D. L. Peng*, “Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes”, J. Mater. Chem. A, 8 (2020) 1678-1686.

(15)H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. S. Xie*, Y. Cai, Y. Ma, Z. Qiao, Q. Luo, J. Lin, L. S. Wang, B. Qu, B. Sa*, and D. L. Peng*, “3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode”, J. Mater. Chem. A, 8 (2020) 313-322.

(16)P. Liu, W. He, Y. Cheng, Q. Wang, C. Zhang, Q. S. Xie*, J. Han, Z. Qiao, H. Zheng, Q. Liu, L. S. Wang, B. Qu, Q. Luo, Z. Zhu, and D. L. Peng*, “Manipulating External Electric Field and Tensile Strain toward High Energy Density Stability in Fast-Charging Li-Rich Cathode Materials”, J. Phys. Chem. Lett., 11 (2020) 2322-2329.

(17)J. Yuan, B. Qu*, Q. Zhang, W. He, Q. S. Xie*, and D. L. Peng*, “Ion Reservoir Enabled by Hierarchical Bimetallic Sulfides Nanocages Toward Highly Effective Sodium Storage”, Small, 16 (2020) 1907261.

(18)H. Zheng, X. Han, W. Guo, L. Lin, Q. S. Xie*, P. Liu, W. He, L. S. Wang*, and  D. L. Peng*, “Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries”, Materials Today Energy, 18 (2020) 100518.

(19)J. Lin, J. Lim, D. H. Youn, Y. Liu,Y. Cai, K. Kawashima, J. Kim, D. L. Peng*, Hang Guo*, G. Henkelman, A. Heller, and C. B. Mullins*, “Cu4SnS4 Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction”, ACS Nano, 13 (2019) 10671-10681.

(20)W. He, P. Liu, B. Qu*, Z. Zheng, P. Deng, P. Li, S. Li, H. Huang, L. Wang, Q. Xie, and D. L. Peng*, “Uniform Na+ Doping-Induced Defects in Li- and Mn-rich Cathodes for High-Performance Lithium-ion Batteries”, Adv. Science, 6 (2019) 1802114.

(21)Z. Qiao, F. Zhou, Q. Zhang, F. Pei, H. Zheng, W. Xu, P. Liu, Y. Ma, Q. S. Xie*, L. S. Wang, X. L. Fang, and D. L. Peng*, “Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries”, Energy Storage Materials, 23 (2019) 62-71.

(22)P. Liu, W. He, Q. S. Xie*, Y. Cheng, W. Xu, Z. Qiao, L. S. Wang, B. Qu, Z. Z. Zhu, and D. L. Peng*, “A Guideline for Tailoring Lattice Oxygen Activity in Lithium-Rich Layered Cathodes by Strain”, J. Phys. Chem. Lett., 10 (2019) 2202.

(23)Y. Cai, L. Ku, L.S. Wang*, Y. Ma, H. Zheng, W. Xu, J. Han, B. Qu, Y. Chen, Qingshui Xie*, and D. L. Peng*, “Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode”, Sci. China Mater., 62 (2019) 1374-1384.

(24)Q. Chen, Y. Yang, H. Zheng, Q. S. Xie*, X. Yan, Y. Ma, L. S. Wang, and D. L. Peng*, “Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes”, J. Mater. Chem. A, 7 (2019) 11683.

(25)B. Deng, Y. Chen*, P. Wu, J. Han, Y. Li, H. Zheng, Q. S. Xie, L. S. Wang, and D. L. Peng*, “Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries”, Journal of Power Sources, 418 (2019) 122-129.

(26)Q. S. Xie, P. Liu, D. Zeng, W. Xu, L. S. Wang, Z. Z. Zhu, L. Mai, and D. L. Peng*, “Dual Electrostatic Assembly of Graphene Encapsulated Nanosheet-Assembled ZnO-Mn-C Hollow Microspheres as a Lithium Ion Battery Anode”, Adv. Funct. Mater., 28 (2018) 1707433.

(27)D Zeng, P. Wu, W. J. Ong*, B. Tang, M. Wu, H. Zheng, Y. Chen*, and D. L. Peng*, “Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light”, Applied Catalysis B: Environmental, 233 (2018) 26-34.

(28)D Zeng, W. Xu, W. J. Ong*, J. Xu, H. Ren, Y. Chen*, and D. L. Peng*, “Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces”, Applied Catalysis B: Environmental, 221 (2018) 47-55.

(29)Z. Zheng, H. Wu, H. Chen, Y. Cheng, Q. B. Zhang*, Q. S. Xie, L. S. Wang, K. Zhang, M. S. Wang, and D. L. Peng*, “Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries”, Nanoscale, 10 (2018) 22203-22214. 

(30)X. Liu, L. S. Wang*, Y. Ma, Y. Qiu, Q. S. Xie, Y. Chen, and D. L. Peng*, “Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials”, Chemical Engineering Journal, 333 (2018) 92-100.

(31)Q. F. Zhang, H. Zheng, L. S. Wang, A. Su, X. Liu, J. Xie, Y. Z. Chen, and D. L. Peng*, “Influence of surface and interface modification on the electrical transport behaviors in Co@Cu nanocomposite films”, J. Magn. Magn. Mater., 460 (2018) 34-40.

(32)L. Lin, Y. Ma, Q. S. Xie*, L. S. Wang, Q. Zhang, and D. L. Peng*, “Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries”, ACS Nano, 11 (2017) 6893-6903.

(33)Q. S. Xie, Y. Ma, X. Wang, D. Zeng, L. S. Wang, L. Mai, and D. L. Peng*, “Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties”, ACS Nano, 10 (2016) 1283-1291.

(34)J. Huang, Y. Ma, Q. S. Xie,* H. Zheng, J. Yang, L. S. Wang, and D. L. Peng*, “3D Graphene Encapsulated Hollow CoSnO3 Nanoboxes as a High Initial Coulombic Efficiency and Lithium Storage Capacity Anode”, Small, 14 (2017) 1703513.

(35)X. Liu, L. S. Wang*, Y. Ma, H. Zheng, L. Lin, Q. Zhang, Y. Chen, Y. Qiu, and “Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band”, ACS Appl. Mater. Interfaces, 9 (2017) 7601.

(36)Qingshui Xie, Liang Lin, Yating Ma, Deqian Zeng, Jingren Yang, Jian Huang, Laisen Wang*, and Dong-Liang Peng*, “Synthesis of ZnO-Cu-C yolk-shell hybrid microspheres with enhanced electrochemical properties for lithium ion battery anodes”, Electrochimica Acta, 226(2017)79-88.

(37)Q. F. Zhang, L. S. Wang*, X. Wang, H. Zheng, X. Liu, J. Xie, Y. Qiu, Y. Chen, and D. L. Peng*, “Electrical transport properties in Co nanocluster-assembled granular film”, J. Appl. Phys., 121 (2017) 103901.

(38)D. Zeng, P. Gong, Y. Chen*, Q. F. Zhang, Q. S. Xie, and D. L. Peng*, “Colloidal synthesis of Cu–ZnO and Cu@CuNi–ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties”, Nanoscale, 8 (2016) 11602-11610.

(39)J. B. Wang, W. B. Mi, L. S. Wang, D. Q. Zeng, Y. Z. Chen, and D. L. Peng*, “Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films”, J. Magn. Magn. Mater., 401 (2016) 30-37.

(40)J. B. Wang, W. B. Mi, L. S. Wang, and D. L. Peng*, “Interfacial-scattering-induced enhancement of the anomalous Hall effect in uniform Fe nanocluster-assembled films”, Europhysics Letters, 109 (2015) 17012.

(41)M. B. Gawande*, A. Goswami, T. Asefa, H. Guo, A. V. Biradar, D. L. Peng, R. Zboril*, and R. S. Varma*, “Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis”, Chem. Soc. Rev., 44 (2015) 7540-7590.

(42)Q. S. Xie, Y. Ma, D. Zeng, L. S. Wang, G. H. Yue, and D. L. Peng*, “Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties”, Scientific Reports, 5 (2015) 08351.

(43)Y. Chen*, D. Zeng, M. B. Cortie, A. Dowd, H. Guo, J. B. Wang, D. L. Peng*, Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications, Small, 11 (2015) 1460-1469.

(44)D. Zeng, Y. Chen,* Z. Wang, J. B. Wang, Q. S. Xie and D. L. Peng*, “Synthesis of Ni–Au–ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity”, Nanoscale, 7 (2015) 11371-11378.

(45)X. L. Liu, L.S. Wang*, R. Xu, Q. Luo, L. Xu, B. B. Yuan, C. Y. Zou, J. B. Wang, and D. L. Peng*, “Influence of total film thickness on high-frequency magnetic properties of the [FeCoSiN/SiNx]n multilayer thin films”, J. Magn. Magn. Mater., 374 (2015) 85-91.

(46)L.S. Wang, S.J. Nie, J.B. Wang, L. Xu, B.B. Yuan, X.L. Liu, Q. Luo, Y. Chen, G.H. Yue, D. L. Peng*, “Effect of experiment parameters on the structure and magnetic properties of NiZn-ferrite films”, Materials Chemistry and Physics, 160 (2015) 321-328.

(47)X. Liu, H. Z. Guo, Q. S. Xie, Q. Luo, L. S. Wang*, D. L. Peng*, “Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials”, Journal of Alloys and Compounds, 649 (2015) 537-543.

(48)Y. Ma, Q. S. Xie, X. Liu, Y. Zhao, D. Zeng, L. S. Wang, Y. Zheng, and D. L. Peng*, “Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries”, Electrochimica Acta, 182 (2015) 327-333.

(49)Q. S. Xie, D. Zeng, Y. T. Ma, L. Lin, L. S. Wang, and D. L. Peng*, “Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties”, Electrochimica Acta, 169 (2015) 283-290.

(50)A. Lu, X. Zhang, Y. Chen*, Q. S. Xie, Q. Qi, Y. Ma, and D. L. Peng*, “Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries”, Journal of Power Sources, 295 (2015) 329-335.

(51)D. Zeng, Y. Chen*, J. Peng, Q. S. Xie, and D. L. Peng*, “Synthesis and photocatalytic properties of multi-morphological AuCu3–ZnO hybrid nanocrystals”, Nanotechnology, 26 (2015) 415602.

(52)H. Z. Guo, X. Liu, C. Bai, Y. Chen*, L. S. Wang, M. Zheng, Q. Dong, and D. L. Peng*, “Effect of Component Distribution and Nanoporosity in CuPt Nanotubes on Electrocatalysis of the Oxygen Reduction Reaction”, ChemSusChem, 8 (2015) 486-494.

(53)J. B. Wang, W. B. Mi, L. S. Wang, Q. F. Zhang, and D. L. Peng*, “Enhanced anomalous Hall effect in Fe nanocluster assembled thin films”, Phys. Chem. Chem. Phys., 16 (2014) 16623.

(54)M. Li, Y. Chen*, N. Ji, D. Zeng, and D. L. Peng*, “Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices”, Materials Chemistry and Physics, 147 (2014) 604-610. 

(55)J. B. Wang, L. S. Wang, H. Z. Guo, M. Lei, Q. F. Zhang, G. H. Yue, Y. Chen, and D. L. Peng*, “Structural and magnetic properties of Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films prepared by a novel nanocomposite technology”, J. Alloys Compd., 608 (2014) 323–328.

(56)R. Xu, L. S. Wang*, X. L. Liu, M. Lei, H. Z. Guo, Y. Chen, J. B. Wang, and D.L. Peng*, “Influence of substrate temperature on high-frequency soft magnetic properties of [Fe80Ni20–O/NiZn–ferrite]n multilayer thin films”, J. Alloys Compd., 604 (2014) 43–49.

(57)A. L. Lu, Y. Chen*, H. Li, A. Dowd, M. B. Cortie, Q. S. Xie, H. Z. Guo, Q. Q. Qi, and D. L. Peng*, “Magnetic Metal Phosphide Nanorods as Effective Hydrogen-Evolution Electrocatalysts”, Int. J. Hydrogen Energy, 9(2014)18919-18928.

(58)H. Z. Guo, X. Liu, Y. Hou, Q. S. Xie, L. S. Wang, H. Geng, and D. L. Peng*, “Magnetically Separable and Recyclable Urchin-Like Co-P Hollow Nanocomposites for Catalytic Hydrogen Generation”, J. Power Sources, 260 (2014) 100-108.

(59)Q. S. Xie, Y. T. Ma, X. Q. Zhang, H. Z. Guo, A. L. Lu, L. S. Wang, G. H. Yue, and D. L. Peng*, “Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries”, Electrochimica Acta, 141 (2014) 374–383.

(60)Q. S. Xie, Y. T. Ma, D. Zeng, X. Q. Zhang, L. S. Wang, G. H. Yue, and D. L. Peng*, “Hierarchical ZnO-Ag-C Composite Porous Microspheres with Superior Electrochemical Properties as Anode Materials for Lithium Ion Batteries”, ACS Applied Materials & Interfaces, 6 (2014) 19895-19904.

(61)Q. S. Xie, Y. Zhao, H. Z. Guo, A. L. Lu, X. X. Zhang, L. S. Wang, M. S. Chen, and D. L. Peng*, “Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation”, ACS Applied Materials & Interfaces, 6 (2014) 421-428.

(62)H. Z. Guo, Y. Chen*, M. B. Cortie, X. Liu, Q. S. Xie, X. Wang, and D. L. Peng*, “Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties”, J. Phys. Chem. C, 118 (2014) 9801−9808.

(63)Q. S. Xie, X. Q. Zhang, X. Wu, H. Wu, X. Liu, G. H. Yue, Y. Yang, and D. L. Peng*, Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries, Electrochimica Acta, 125(2014) 659–665

(64)A. L. Lu, Y. Chen*, D. Q. Zeng, M. Li, Q. S. Xie, X. X. Zhang, and D. L. Peng*, “Shaperelated optical and catalytic properties of wurtzitetype CoO nanoplates and nanorods”, Nanotechnology, 25 (2014) 035707.

(65)Y. Chen*, D. Q. Zeng, K. Zhang, A. L. Lu, L. S. Wang, and D. L. Peng*, “Au–ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties”, Nanoscale , 6 (2014) 874–881.

(66)D. Zeng, Y. Chen,* A. Lu, M. Li, H. Guo, J. Wang, and D. L. Peng*, “Ni-Cu@Au-Cu nanowires with tunable magnetic and plasmonic properties: nonaqueous injection synthesis and characterization”, Chem. Commun., 49(2013)11545-11547.

(67)H. Guo, N. Lin, Y. Chen, Z. W. Wang, Q. S. Xie, T. C. Zheng, N. Gao, S. P. Li, J. Y. Kang, D. J. Cai, and D. L. Peng*, “Copper Nanowires as Fully Transparent Conductive Electrodes”, Scientific Reports, 3 (2013) 02323.

(68)H. Guo, Y. Chen, H. Ping, J. Jin, and D. L. Peng*, “Facile Synthesis of Cu and Cu@Cu-Ni Nanocubes and Nanowires in Hydrophobic Solution in the Presence of Nickel and Chlorine Ions”, Nanoscale, 5(2013)2394-2402. 

(69)Q. S. Xie, F. Li, H. Guo, L. S. Wang, Y. Chen, G. H. Yue, and D. L. Peng*, “Template-Free Synthesis of Amorphous Double-Shelled Zinc–Cobalt Citrate Hollow Microspheres and Their Transformation to Crystalline ZnCo2O4 Microspheres”, ACS Applied Materials & Interfaces, 5(2013) 5508-5517.

(70)X. X. Zhang, Q. S. Xie, G. H. Yue*, Y. Zhang, X. Q. Zhang, A. L. Lu, and D. L. Peng*, “A novel hierarchical network-like Co3O4 anode material for lithium batteries”, Electrochimica Acta, 111(2013)746-754.

(71)X. Liu, Y. Chen, L. S. Wang, and D. L. Peng*, “Transition from paramagnetism to ferromagnetism in HfO2 nanorods”, J. Appl. Phys., 113(2013)076102.

(72)Y. Wang, H. Geng, J. B. Wang, S. Nie, L. S. Wang, Y. Chen, and D. L. Peng*, “Magnetic properties of [Fe65Co35-O/SiO2]n multilayer thin films for high-frequency application”, Applied Physics A, 111(2013)569–574.

(73)H. Geng, J. Q. Wei, S. J. Nie, Y. Wang, Z. W. Wang, L. S. Wang, Y. Chen, D. L. Peng*, F. S. Li, and D. S. Xue, “[Fe80Ni20-O/SiO2]n multilayer thin films for applications in GHz range”, Materials Letters, 92(2013)346-349.

(74)H. Guo, Y. Chen*, H. Ping, L. S. Wang, and D. L. Peng*, “One-Pot Synthesis of Hexagonal and Triangular Nickel-Copper Alloy Nanoplates and Their Magnetic and Catalytic Properties”, J. Mater. Chem., 22(2012)8336-8344. (IF=5.968)

(75)H. She, Y. Chen*, X. Chen, K. Zhang, Z. Wang, and D. L. Peng*, “Structure, optical and magnetic properties of Ni@Au and Au@Ni nanoparticles synthesized via non-aqueous approaches”, J. Mater. Chem., 22(2012)2757-2765. (IF=5.968)

(76)A. Lu, Y. Chen, J. Jin, G. H. Yue, and D. L. Peng*, “CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride”, J. Power Sources, 220(2012)391-398. (IF=4.951)

(77)H. Geng, Y. Wang, J. B. Wang, Z. Q. Li, S. J. Nie, L. S. Wang, Y. Chen, D. L. Peng*, “Method to improve high-frequency magnetic characteristics of Fe80Ni20-O alloy films by introducing low-dose oxygen”, Materials Letters 67 (2012) 99–102.

(78)L.S. Wang, S.J. Liu, H.Z. Guo, Y. Chen, G.H. Yue, D. L. Peng*, T. Hihara, and K. Sumiyama, “Preparation and characterization of the ZnO:Al/Fe65Co35/ZnO:Al multifunctional films”, Applied Physics A, 106(2012)717–723.

(79)H. Guo, Y. Chen, X. Chen, R. Wen, G. H. Yue, and D. L. Peng*, “Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen”, Nanotechnology, 22 (2011) 195604.

(80)L.S. Wang, R.T. Wen, Y. Chen, G.H. Yue, D.L. Peng*, and T. Hihara, “Gas-phase preparation and size control of Fe nanoparticles”, Applied Physics A, 103 (2011) 1015-1020.

(81)K. Zhang, L.S. Wang, G.H. Yue, Y.Z Chen, D. L. Peng*, Z.B. Qi, and Z.C. Wang, “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings”, Surf. Coat. Tech., 205 (2011) 3588-3595.

(82)H. She, Y. Chen*, R. Wen, K. Zhang, G. H. Yue, D. L. Peng*, “A nonaqueous approach to the preparation of iron phosphide nanowires”, Nanoscale Res. Lett., 5 (2010) 786-790.

(83)W. Wang Y. Chen, G.H. Yue, K. Sumiyama, T. Hihara, D. L. Peng*, “Magnetic softness and high-frequency characteristics of Fe65Co35-O alloy films”, J. Appl. Phys., 106 (2009) 013912.

(84)L.S. Wang, G.H. Yue, Y.Z. Chen, R.T. Wen, X. Wang. D.L. Peng*, “Synthesis and characterization of ferromagnetic transparent conductive films”, Mater. Chem. Phys., 117 (2009) 224-227.

(85)Y. Chen, X. Luo, X. Luo, and D. L. Peng*, “The synthesis of iron-nickel nanoparticles via a nonaqueous organometallic route”, Materials Chemistry and Physics, 113 (2009) 412-416.

(86)D. L. Peng*, K. Sumiyama, K. Kumagai, T. Yamabuchi, D. Kobayashi, and T. Hihara, “Magnetic and electrical characteristics in dense Fe-Ni alloy cluster-assembled films prepared by energetic cluster deposition”, Journal of Materials Research, 23 (2008) 189-197. 

(87)Y. Chen, D. L. Peng*, D. Lin and X. Luo, “Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines”, Nanotechnology, 18 (2007) 505703. 

(88)D. L. Peng*, H. Yamada, K. Sumiyama, T. Hihara and K. Kumagai, “Soft magnetic property and magnetic exchange correlation in high-density Fe-Co alloy cluster-assemblies”, J. Appl. Phys., 102 (2007) 033917-1--033917-6. 

(89)S. Yamamuro, K. Yamamoto, D. L. Peng, T. Hirayama, and K. Sumiyama, “Random dipolar ferromagnetism in Co/CoO core-shell cluster assemblies observed by electron holography”, Appl. Phys. Lett., 90 (2007) 242510--242510-3. 

(90)R. Katoh, T. Hihara, D. L. Peng, and K. Sumiyama, “Magnetic and electrical properties of Fe/Si core-shell cluster assemblies prepared with double glow discharge sources”, Appl. Phys. Lett., 87 (2005) 252501-1--252501-3. 

(91)D. L. Peng*, H. Yamada, T. Hihara T. Uchida, and K. Sumiyama, “Dense Fe cluster-assembled films by energetic cluster deposition”, Appl. Phys. Lett., 85 (2004) 2935-2937.

(92)D. L. Peng*, T. Hihara and K. Sumiyama, “Formation and magnetic properties of Fe-Pt alloy clusters by plasma-gas condensation”, Appl. Phys. Lett., 83 (2003) 350-352. 

(93)R. Katoh, T. Hihara, D. L. Peng, and K. Sumiyama, “Composite deposition of Co and Si clusters by rf/dc plasma-gas-condensation”, Appl. Phys. Lett., 82 (2003) 2688-2690. 

(94)D. L. Peng*, T. Asai, N. Nozawa, T. Hihara and K. Sumiyama, “Magnetic properties and magnetoresistance in small iron oxide cluster assemblies”, Appl. Phys. Lett., 81 (2002) 4598-4600.

(95)D. L. Peng*, T. Hihara, K. Sumiyama and H. Morikawa, “Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies”, J. Appl. Phys., 92 (2002) 3075-3083.

(96)D. L. Peng*, T. J. Konno, K. Wakoh, T. Hihara and K. Sumiyama, “Co cluster coalescence behavior observed by electrical conduction and transmission electron microscopy”, Appl. Phys. Lett., 78 (2001) 1535-1537.

(97)D. L. Peng*, K. Sumiyama, T. Hihara, S. Yamamuro and T. J. Konno, “Magnetic properties of monodispersed Co/CoO cluster assemblies”, Phys. Rev. B, 61 (2000) 3103-3109. 

(98)D. L. Peng*, K. Sumiyama, T. Hihara and S. Yamamuro, “Enhancement of magnetic coercivity and macroscopic quantum tunneling in monodispersed Co/CoO cluster assemblies”, Appl. Phys. Lett., 75(1999)3856-3858. 

(99)D. L. Peng, K. Sumiyama, S. Yamamuro, T. Hihara and T. J. Konno, “Characteristic Tunnel-type Conductivity and Magnetoresistance in a CoO-coated Monodispersive Co Cluster Assembly”, Appl. Phys. Lett., 74 (1999) 76-78. 

(100)D. L. Peng*, K. Sumiyama, T. J. Konno, T. Hihara and S. Yamamuro, “Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies”, Phys. Rev. B, 60 (1999) 2093-2100.

版权所有 © 365游戏官方网站(中国)股份有限公司